

Quantum Futures Hackathon - CERN

The Team

Illia Babounikau, Sadra Boreiri, David Ittah, Jake Malliaros, Dmitry Grinko, Anton Karazeev

The Problem: Quantum Error Correction

Image from Phys.org

The Problem: Quantum Error Correction

 Future progress in quantum computing is impossible, without error correction

 Current quantum computers are too unreliable to use our state of the art error correction methods

The Solution: VQEC

Variational Quantum Error Correction

We are looking for optimal parameters for a Unitary which reduces error of the following system.

$$\theta = [\theta_x, \theta_y, \theta_z]^T$$

By taking the inverse of the Quantum Subcircuit and applying a noise model from the hardware, we may find theta using stochastic optimization.

Working Prototype

Initialized with state |00> with random noise

For more details check out our github, https://github.com/bobovnii/QML-QEC

Feel free to ask questions after the presentations.

Thank you Hackathon organizers, CERN staff, speakers and participants!